Zbadać monotoniczność ciągu liczbowego
\[a_n=(-1)^{2n}\]
Rozwiązanie
Wypiszmy kilka wyrazów naszego ciągu liczbowego:
\[a_1=(-1)^{2\cdot 1}=1,\,\,a_2=(-1)^4=1,\,\,a_3=(-1)^6=1,...\]
Dla każdego \(n\in\mathbb{N}\) liczba \(2n\) jest liczbą parzystą, dlatego:
\[a_n=(-1)^{2n}=1\]
Zatem dla każdego \(n\in\mathbb{N}\)
\[a_n=a_{n+1}\]
co oznacza, że nasz ciąg jest stały.
Wskazówki
Ciągi monotoniczne
Monotoniczność ciągu oznacza, że ciąg jest stały lub rosnący lub niemalejący lub malejący lub nierosnący.
Ciąg liczbowy \((a_n)\) jest stały, gdy jego wyrazy pozostają takie same wraz ze wzrostem wartości indeksu \(n\): \[a_1=a_2=a_3=...\] czyli \[\forall\, n\in\mathbb{N}\] (dla każdej liczby naturalnej \(n\) zachodzi równość) \[a_n=a_{n+1}\]
Ciąg liczbowy \((a_n)\) jest rosnący, gdy jego wyrazy zwiększają się wraz ze wzrostem wartości indeksu \(n\): \[a_1<a_2<a_3<...\] czyli \[\forall\, n\in\mathbb{N}\] (dla każdej liczby naturalnej \(n\) zachodzi nierówność) \[a_n< a_{n+1}\]
Ciąg liczbowy \((a_n)\) jest niemalejący, gdy jego wyrazy zwiększają się lub pozostają niezmienione (równe) wraz ze wzrostem wartości indeksu \(n\): \[a_1\le a_2\le a_3\le...\]czyli \[\forall\, n\in\mathbb{N}\] (dla każdej liczby naturalnej \(n\) zachodzi nierówność) \[a_n\le a_{n+1}\]
Ciąg liczbowy \((a_n)\) jest malejący, gdy jego wyrazy zmniejszają się wraz ze wzrostem wartości indeksu \(n\): \[a_1>a_2>a_3>...\] czyli \[\forall\, n\in\mathbb{N}\] (dla każdej liczby naturalnej \(n\) zachodzi nierówność) \[a_n> a_{n+1}\]
Ciąg liczbowy \((a_n)\) jest nierosnący, gdy jego wyrazy zmniejszają się ub pozostają niezmienione (równe) wraz ze wzrostem wartości indeksu \(n\): \[a_1\ge a_2\ge a_3\ge ...\] czyli \[\forall\, n\in\mathbb{N}\] (dla każdej liczby naturalnej \(n\) zachodzi nierówność) \[a_n\ge a_{n+1}\]
Istnieje też pojęcie monotoniczności w ścisłym sensie, co oznacza, że ciąg jest rosnący lub malejący.
Jak sprawdzić monotoniczność ciągu w praktyce?
Monotoniczność ciągu \((a_n)\) możesz ustalić analizując znak różnicy\[a_{n+1}-a_n\]lub, gdy ciąg \(a_n\) ma wyrazy dodatnie badając relację między liczbą 1, a wyrażeniem\[\frac{a_{n+1}}{a_n}\]Ciąg \((a_n)\) jest rosnący, gdy\[a_{n+1}-a_n>0\]lub gdy \(a_n>0\) dla każdego \(n\in\mathbb{N}\) oraz\[\frac{a_{n+1}}{a_n}>1\]Ciąg \((a_n)\) jest niemalejący, gdy\[a_{n+1}-a_n\ge 0\]lub gdy \(a_n>0\) dla każdego \(n\in\mathbb{N}\) oraz\[\frac{a_{n+1}}{a_n}\ge 1\]Ciąg \((a_n)\) jest malejący, gdy\[a_{n+1}-a_n<0\]lub gdy \(a_n>0\) dla każdego \(n\in\mathbb{N}\) oraz\[\frac{a_{n+1}}{a_n}<1\]Ciąg \((a_n)\) jest nierosnący, gdy\[a_{n+1}-a_n\le 0\]lub gdy \(a_n>0\) dla każdego \(n\in\mathbb{N}\) oraz\[\frac{a_{n+1}}{a_n}\le 1\]
Komentarzy (0)