NAUCZ SIĘ JEDNEGO DZIAŁU MATEMATYKI WYŻSZEJ W 3 DNI
 Wystarczy uczyć się na przykładach, a teorię OGARNĄĆ przy okazji
Na pokładzie mamy już 30 000 studentów. Dołącz i Ty!

Kategorie zadań z rozwiązaniami z matematyki wyższej

Udowodnij, że każda liczba zespolona \(z\neq -1\) o module równym 1 może być przedstawiona w postaci:

\(z=\frac{1+ti}{1-ti},\,\,\textrm{gdzie}\,\,t\in\mathbb{R}\)

Rozwiązanie widoczne po rejestracji

Wyznacz argumenty liczb zespolonych:

(a) \(\frac{\sqrt{3}}{2}+\frac{1}{2}i\)
(b) \(\frac{1}{2}+\frac{\sqrt{3}}{2}i\)
(c) \(-\frac{1}{2}+\frac{\sqrt{3}}{2}i\)
(d) \(-\frac{\sqrt{3}}{2}+\frac{1}{2}i\)
(e) \(-\frac{1}{2}-\frac{\sqrt{3}}{2}i\)
(f) \(\frac{1}{2}-\frac{\sqrt{3}}{2}i\)

Rozwiązanie widoczne po rejestracji

Rozwiąż nierówność z argumentem liczby zespolonej i wykonaj rysunek na płaszczyźnie zespolonej:

\(0< \arg(z)< \frac{\pi}{4}\)

Zobacz rozwiązanie >>

Na tej stronie znajdziesz około tysiąca zadań z rozwiązaniami i przykładów krok po kroku głównie z zakresu matematyki wyższej, jak również z matematyki na poziomie liceum. Zadania podzielone są na działy tematyczne zazwyczaj według przedmiotów i tematów wymaganych na studiach, np. zadania z pochodnych funkcji i całek (analiza matematyczna), macierzy i liczb zespolonych (algebra liniowa), zmiennych losowych i prawdopodobieństwa (rachunek prawdopodobieństwa) itd.

W każdej kategorii znajdziesz zadania o różnym poziomie trudności, a pod każdym zadaniem znajdziesz wiele wskazówek jak przebiega rozwiązanie, potrzebne definicje i wzory oraz podsumowanie schematów użytych w rozwiązaniu. Często rozwiązanie zadania omówione jest wręcz krok po kroku. Warto starać się samodzielnie rozwiązać jak najwięcej zadań znajdujących się na stronie, ponieważ są tu zebrane typowe zadania z kolokwiów i egzaminów z polskich uczelni. Nauka matematyki na przykładach i konkretnych zadaniach jest najbardziej efektywna - potwierdzają to badania naukowe. Trzeba tylko uczyć się (a właściwie analizować przykłady i rozwiązywać zadania) konsekwentnie i wytrwale, a efekty w postaci lepszego zrozumienia pojęć i schematów oraz umiejętność samodzielnego rozweiązywania podobnych zadań przyjdą same.

Pamiętaj, że zawsze masz możliwość zadania pytania w komentarzu pod każdym zadaniem - warto z tej możliwości korzystać, ponieważ na tej stronie nie ma głupich pytań i każde, nawet najgłupsze pytanie znajdzie swoją odpowiedź. Powodzenia w zrozumieniu matematyki!