NAUCZ SIĘ JEDNEGO DZIAŁU MATEMATYKI WYŻSZEJ W 3 DNI
 Wystarczy uczyć się na przykładach, a teorię OGARNĄĆ przy okazji
Na pokładzie mamy już 30 000 studentów. Dołącz i Ty!

Kategorie zadań z rozwiązaniami z matematyki wyższej

Zbadaj ciągłość funkcji:

\(f(x)=\left\{\begin{array}{ll}x\sin\left(\frac{1}{x}\right)&\textrm{dla}\,\,x\neq 0\\ 0& \textrm{dla}\,\,x=0\end{array}\right.\)

Zobacz rozwiązanie >>

Podaj przykład funkcji określonej dla wszystkich liczb rzeczywistych, która jest nieciągła w punktach 1 i 2.

Zobacz rozwiązanie >>

Wykaż, że funkcja:

\(f(x)=\left\{\begin{array}{ll}x+2&\textrm{dla}\,\,x<0\\0&\textrm{dla}\,\,x=0\\-x+2&\textrm{dla}\,\,x>0\end{array}\right.\)

nie jest ciągła w punkcie \(x_0=0\).

Zobacz rozwiązanie >>

Dobierz parametr a tak, aby funkcja:

\(f(x)=\left\{\begin{array}{ll}\frac{x^2-1}{x-1}&\textrm{dla}\,\,x\neq 1\\ a& \textrm{dla}\,\,x=1\end{array}\right.\)

była ciągła w zbiorze liczb rzeczywistych.

Rozwiązanie widoczne po rejestracji

Na tej stronie znajdziesz około tysiąca zadań z rozwiązaniami i przykładów krok po kroku głównie z zakresu matematyki wyższej, jak również z matematyki na poziomie liceum. Zadania podzielone są na działy tematyczne zazwyczaj według przedmiotów i tematów wymaganych na studiach, np. zadania z pochodnych funkcji i całek (analiza matematyczna), macierzy i liczb zespolonych (algebra liniowa), zmiennych losowych i prawdopodobieństwa (rachunek prawdopodobieństwa) itd.

W każdej kategorii znajdziesz zadania o różnym poziomie trudności, a pod każdym zadaniem znajdziesz wiele wskazówek jak przebiega rozwiązanie, potrzebne definicje i wzory oraz podsumowanie schematów użytych w rozwiązaniu. Często rozwiązanie zadania omówione jest wręcz krok po kroku. Warto starać się samodzielnie rozwiązać jak najwięcej zadań znajdujących się na stronie, ponieważ są tu zebrane typowe zadania z kolokwiów i egzaminów z polskich uczelni. Nauka matematyki na przykładach i konkretnych zadaniach jest najbardziej efektywna - potwierdzają to badania naukowe. Trzeba tylko uczyć się (a właściwie analizować przykłady i rozwiązywać zadania) konsekwentnie i wytrwale, a efekty w postaci lepszego zrozumienia pojęć i schematów oraz umiejętność samodzielnego rozweiązywania podobnych zadań przyjdą same.

Pamiętaj, że zawsze masz możliwość zadania pytania w komentarzu pod każdym zadaniem - warto z tej możliwości korzystać, ponieważ na tej stronie nie ma głupich pytań i każde, nawet najgłupsze pytanie znajdzie swoją odpowiedź. Powodzenia w zrozumieniu matematyki!