W celu poprawnego działania witryny stosujemy pliki cookies (ciasteczka). Więcej informacji w Polityce Prywatności.

Rozumiem

NAUCZ SIĘ JEDNEGO DZIAŁU MATEMATYKI WYŻSZEJ W 3 DNI
 Wystarczy uczyć się na przykładach, a teorię OGARNĄĆ przy okazji
Na pokładzie mamy już 29 000 studentów. Dołącz i Ty!

Oblicz granicę ciągu liczbowego

\[\lim\limits_{n\to \infty} \left(-\frac{1}{2}\right)^n\]

Rozwiązanie

Możemy obliczyć tą granicę następująco:

\[\lim\limits_{n\to \infty} \left(-\frac{1}{2}\right)^n=\lim\limits_{n\to \infty} \frac{-1}{2^n}=\left[\frac{-1}{\infty}\right]=0\]

Ostatnia równość wynika z następującego schematu:

\[\frac{g}{\infty}=0,\,\,\,\textrm{gdzie}\,\,\,-\infty<g<\infty\]

(granica ciągu: liczba dzielona przez "nieskończoność" = 0)

Można też powołać się na ogólny wzór na granicę ciągu \(a_n=q^n\), gdzie \(|q|<1\):

Granice ciągów - zad. 2 - rozwiązanie

stąd

\[\lim\limits_{n\to \infty} \left(-\frac{1}{2}\right)^n=0\]

Na poniższym rysunku widać zachowanie ciągu \(b_n=\left(-\frac{1}{2}\right)^n\). Wraz ze wzrostem wartości indeksu \(n\) ciąg \(b_n\) coraz bardziej zbliża się do zera (przyjmując na przemian wartości ujemne i dodatnie):

ciag liczbowy minus 1 przez 2 do potegi n

 

Nieskończoności w granicach - ważne schematy

Granica ciągu: liczba + "nieskończoność" = "nieskończoność"

\(g+\infty=\infty+g=\infty,\,\,gdy\,\,-\infty<g\le \infty\) 

Granica ciągu: liczba pomnożona przez "nieskończoność" = "nieskończoność"

\(g\cdot\infty=\infty\cdot g=\infty,\,\,gdy\,\,0<g\le \infty\)

Granica ciągu: liczba podzielona przez "nieskończoność" = 0

\(\frac{g}{\infty}=0,\,\,gdy\,\,-\infty<g<\infty\)

Granica ciągu: liczba podzielona przez 0 = "nieskończoność"

\(\frac{g}{0}=\infty,\,\,gdy\,\,0<g<\infty\)

Granica ciągu: liczba podniesiona do potęgi "nieskończoność" = 0, gdy liczba jest dodatnia i mniejsza od 1

\(g^{\infty}=0,\,\,gdy\,\,0<g<1\)

Granica ciągu: liczba podniesiona do potęgi "nieskończoność" = "nieskończoność", gdy liczba jest większa od 1

\(g^{\infty}=\infty,\,\,gdy\,\,1<g\le \infty\)

Granica ciągu: "nieskończoność" podniesiona do potęgi liczba = 0, gdy liczba jest ujemna

\(\infty^{g}=0,\,\,gdy\,\,-\infty<g< 0\)

Granica ciągu: "nieskończoność" podniesiona do potęgi liczba = "nieskończoność", gdy liczba jest dodatnia

\(\infty^{g}=\infty,\,\,gdy\,\,0<g\le \infty\)

Pożyteczne własności granic właściwych ciągów

Jeżeli ciągi \(a_n\) i \(b_n\) są zbieżne do granic właściwych (skończonych liczb), to:

\[\lim\limits_{n\to \infty}(a_n+b_n)=\lim\limits_{n\to \infty} a_n+\lim\limits_{n\to \infty} b_n\]

\[\lim\limits_{n\to \infty}(a_n-b_n)=\lim\limits_{n\to \infty} a_n-\lim\limits_{n\to \infty} b_n\]

\(\lim\limits_{n\to \infty}(c\cdot a_n)=c\cdot \lim\limits_{n\to \infty} a_n\), gdy \(c\in\mathbb{R}\)

\[\lim\limits_{n\to \infty}(a_n\cdot b_n)=\left(\lim\limits_{n\to \infty} a_n\right)\cdot \left(\lim\limits_{n\to \infty}b_n\right)\]

\(\lim\limits_{n\to \infty}\left(\frac{a_n}{b_n}\right)=\frac{\lim\limits_{n\to \infty} a_n}{\lim\limits_{n\to \infty} b_n}\), gdy \(\lim\limits_{n\to \infty} b_n\neq 0\)

\(\lim\limits_{n\to \infty}(a_n)^p=\left(\lim\limits_{n\to \infty} a_n\right)^p\),
gdy p jest liczbą całkowitą różną od zera

\(\lim\limits_{n\to \infty}\sqrt[k]{a_n}=\sqrt[k]{\lim\limits_{n\to \infty} a_n}\),
gdy k jest liczbą naturalną różną od 1

 

Komentarzy (0)


    Na tej stronie znajdziesz około tysiąca zadań z rozwiązaniami i przykładów krok po kroku głównie z zakresu matematyki wyższej, jak również z matematyki na poziomie liceum. Zadania podzielone są na działy tematyczne zazwyczaj według przedmiotów i tematów wymaganych na studiach, np. zadania z pochodnych funkcji i całek (analiza matematyczna), macierzy i liczb zespolonych (algebra liniowa), zmiennych losowych i prawdopodobieństwa (rachunek prawdopodobieństwa) itd.

    W każdej kategorii znajdziesz zadania o różnym poziomie trudności, a pod każdym zadaniem znajdziesz wiele wskazówek jak przebiega rozwiązanie, potrzebne definicje i wzory oraz podsumowanie schematów użytych w rozwiązaniu. Często rozwiązanie zadania omówione jest wręcz krok po kroku. Warto starać się samodzielnie rozwiązać jak najwięcej zadań znajdujących się na stronie, ponieważ są tu zebrane typowe zadania z kolokwiów i egzaminów z polskich uczelni. Nauka matematyki na przykładach i konkretnych zadaniach jest najbardziej efektywna - potwierdzają to badania naukowe. Trzeba tylko uczyć się (a właściwie analizować przykłady i rozwiązywać zadania) konsekwentnie i wytrwale, a efekty w postaci lepszego zrozumienia pojęć i schematów oraz umiejętność samodzielnego rozweiązywania podobnych zadań przyjdą same.

    Pamiętaj, że zawsze masz możliwość zadania pytania w komentarzu pod każdym zadaniem - warto z tej możliwości korzystać, ponieważ na tej stronie nie ma głupich pytań i każde, nawet najgłupsze pytanie znajdzie swoją odpowiedź. Powodzenia w zrozumieniu matematyki!