Oblicz granicę wielomianu:
\(W(x)=3x^3-2x^2+5x-7\)
w \(-\infty\) i \(+\infty\).
NAUCZ SIĘ JEDNEGO DZIAŁU MATEMATYKI WYŻSZEJ W 3 DNI
Wystarczy uczyć się na przykładach, a teorię OGARNĄĆ przy okazji
Na pokładzie mamy już 29 000 studentów. Dołącz i Ty!
Oblicz granicę wielomianu:
\(W(x)=3x^3-2x^2+5x-7\)
w \(-\infty\) i \(+\infty\).
Oblicz granicę wielomianu:
\(W(x)=-2x^4+x^3+5x^2-8x\)
dla \(x\to -\infty\) i \(x\to +\infty\).
Zbadaj ciągłość funkcji:
\(f(x)=\left\{\begin{array}{ll}x\sin\left(\frac{1}{x}\right)&\textrm{dla}\,\,x\neq 0\\ 0& \textrm{dla}\,\,x=0\end{array}\right.\)
Wykaż, że funkcja:
\(f(x)=\left\{\begin{array}{ll}x+2&\textrm{dla}\,\,x<0\\0&\textrm{dla}\,\,x=0\\-x+2&\textrm{dla}\,\,x>0\end{array}\right.\)
nie jest ciągła w punkcie \(x_0=0\).
Podaj przykład funkcji określonej dla wszystkich liczb rzeczywistych, która jest nieciągła w punktach 1 i 2.
Wskaż punkty nieciągłości funkcji:
\((a)\, y=\frac{x+1}{x-1}\)
\((b)\, y=tg\, x\)
\((c)\, y=\frac{1}{x^2-1}\)
Dla jakich wartości parametru a funkcja jest ciągła w punkcie x=4
Dla jakich wartości parametru a funkcja jest ciągła w punkcie \(x=\frac{\pi}{2}\)
Dla jakich wartości parametru a funkcja jest ciągła w punkcie x=1
Dla jakich wartości parametrów a i b funkcja jest ciągła w punkcie x=0
Zbadaj ciągłość funkcji w punkcie x=0
Zbadaj ciągłość funkcji
Zbadaj ciągłość funkcji w zależności od parametrów a i b
Dla jakich wartości parametrów a i b funkcja jest ciągła w punkcie x=0
Sprawdź, czy funkcja:
\(f(x)=\left\{\begin{array}{ll}\frac{\sin x}{x}&\textrm{dla}\,\,x>0\\ 0& \textrm{dla}\,\,x=0\\\frac{e^x-1}{x}&\textrm{dla}\,\,x<0\end{array}\right.\)
jest ciągła w zbiorze liczb rzeczywistych.
Sprawdź, czy funkcja:
\(f(x)=\left\{\begin{array}{ll}\sqrt{x+1}&\textrm{dla}\,\,x>0\\ 1& \textrm{dla}\,\,x=0\\|x-1| &\textrm{dla}\,\,x<0\end{array}\right.\)
jest ciągła w zbiorze liczb rzeczywistych.
Sprawdź, czy funkcja:
\(f(x)=\left\{\begin{array}{ll}\frac{x}{|x|}&\textrm{dla}\,\,x\neq 0\\ 1& \textrm{dla}\,\,x=0\end{array}\right.\)
jest ciągła w zbiorze liczb rzeczywistych.
Dobierz parametr a tak, aby funkcja:
\(f(x)=\left\{\begin{array}{ll}\frac{x^2-2x+1}{x-1}&\textrm{dla}\,\,x\neq 1\\ a& \textrm{dla}\,\,x=1\end{array}\right.\)
była ciągła w zbiorze liczb rzeczywistych.
Dobierz parametr a tak, aby funkcja:
\(f(x)=\left\{\begin{array}{ll}\frac{x^2-1}{x-1}&\textrm{dla}\,\,x\neq 1\\ a& \textrm{dla}\,\,x=1\end{array}\right.\)
była ciągła w zbiorze liczb rzeczywistych.
Dobierz parametr a tak, aby funkcja:
\(f(x)=\left\{\begin{array}{ll}\frac{x^2-1}{|x-1|}&\textrm{dla}\,\,x\neq 1\\ a& \textrm{dla}\,\,x=1\end{array}\right.\)
była ciągła w zbiorze liczb rzeczywistych.
Na tej stronie znajdziesz około tysiąca zadań z rozwiązaniami i przykładów krok po kroku głównie z zakresu matematyki wyższej, jak również z matematyki na poziomie liceum. Zadania podzielone są na działy tematyczne zazwyczaj według przedmiotów i tematów wymaganych na studiach, np. zadania z pochodnych funkcji, całek, macierzy, liczb zespolonych itd.
W każdej kategorii znajdziesz zadania o różnym poziomie trudności, pod każdym zadaniem znajdziesz wiele wskazówek jak przebiega rozwiązanie, często rozwiązanie omówione jest krok po kroku. Warto starać się samodzielnie rozwiązać jak najwięcej zadań znajdujących się na stronie, ponieważ są tu zebrane typowe zadania z kolokwiów i egzaminów z polskich uczelni. Pamiętaj, że zawsze masz możliwość zadania pytania w komentarzu pod każdym zadaniem. Powodzenia w zrozumieniu matematyki!