W celu poprawnego działania witryny stosujemy pliki cookies (ciasteczka). Więcej informacji w Polityce Prywatności.

Rozumiem

NAUCZ SIĘ JEDNEGO DZIAŁU MATEMATYKI WYŻSZEJ W 3 DNI
 Wystarczy uczyć się na przykładach, a teorię OGARNĄĆ przy okazji
Na pokładzie mamy już 29 000 studentów. Dołącz i Ty!

Zapisz macierz główną układu równań

\[\left\{\begin{array}{ccccccc}x&-&4y&+&5z&=&2\\&& 2y& -&z&=&1\\4x&+& 2y&+&z&=&0\end{array}\right.\]

Rozwiązanie

Macierz główna układu zawiera współczynniki liczbowe stojące przy niewiadomych, więc:

\[A=\left[\begin{array}{ccc}1&-4&5\\0& 2& -1\\4& 2&1\end{array}\right]\]

 

Wskazówki i teoria

Macierz, która opisuje cały układ równań liniowych nazywa się macierzą rozszerzoną układu, natomiast macierz zawierającą tylko wpsółczynniki występujące przy niewiadomych (bez wyrazów wolnych) nazywa się macierzą współczynników układu.

W ogólnym przypadku, układowi równań:

\[\left\{\begin{array}{ccccccccc}a_{11}x_1&+&a_{12}x_2&+&\ldots&+&a_{1n}x_n&=&b_1\\a_{21}x_1&+&a_{22}x_2&+&\ldots&+&a_{2n}x_n&=&b_2\\\vdots&&\vdots&&&&\vdots&&\vdots\\a_{m1}x_1&+&a_{m2}x_2&+&\ldots&+&a_{mn}x_n&=&b_m\end{array}\right.\]

można przypisać macierz główną układu zawierającą współczynniki liczbowe występujące przy niewiadomych \(x_1,x_2,...,x_n\):

\[A=\left[\begin{array}{cccc}a_{11}&a_{12}&\ldots&a_{1n}\\a_{21}&a_{22}&\ldots&a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\a_{m1}&a_{m2}&\ldots&a_{mn}\end{array}\right]\]

oraz macierz rozszerzoną zawierającą współczynniki liczbowe występujące przy niewiadomych \(x_1,x_2,...,x_n\) oraz wyrazy wolne \(b_1,b_2,...,b_m\):

\[[A|B]=\left[\begin{array}{ccccc}a_{11}&a_{12}&\ldots&a_{1n}&b_1\\a_{21}&a_{22}&\ldots&a_{2n}&b_2\\ \vdots&\vdots&\ddots&\vdots&\vdots\\a_{m1}&a_{m2}&\ldots&a_{mn}&b_m\end{array}\right]\]

w równoważnej postaci blokowej możemy tą macierz zapisać tak:

\[[A|B]=\left[\begin{array}{cccc}a_{11}&a_{12}&\ldots&a_{1n}\\a_{21}&a_{22}&\ldots&a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\a_{m1}&a_{m2}&\ldots&a_{mn}\end{array}\right|\left.\begin{array}{c}b_1\\b_2\\ \vdots \\ b_m\end{array}\right]\]

 

Komentarzy (0)