W celu poprawnego działania witryny stosujemy pliki cookies (ciasteczka). Więcej informacji w Polityce Prywatności.

Rozumiem

NAUCZ SIĘ JEDNEGO DZIAŁU MATEMATYKI WYŻSZEJ W 3 DNI
 Wystarczy uczyć się na przykładach, a teorię OGARNĄĆ przy okazji
Na pokładzie mamy już 29 000 studentów. Dołącz i Ty!

Oblicz granicę ciągu liczbowego

\[\lim\limits_{n\to \infty} \left(\frac{1}{n}\right)^{\frac{1}{n}}\]

Rozwiązanie

Skorzystamy z własności potęg, z własności granic ciągów (granica ilorazu jest ilorazem granic) oraz z podstawowego wzoru na granicę ciągu \(\lim\limits_{n\to \infty}\sqrt[n]{n}=1\):

\[\lim\limits_{n\to \infty} \left(\frac{1}{n}\right)^{\frac{1}{n}}=\lim\limits_{n\to \infty} \frac{1}{n^{\frac{1}{n}}}=\lim\limits_{n\to \infty}\frac{1}{\sqrt[n]{n}}=\frac{1}{\lim\limits_{n\to\infty}\sqrt[n]{n}}=\frac{1}{1}=1\]

Wskazówki

Własności potęg użyte w rozwiązaniu:

\[\left(\frac{a}{b}\right)^c=\frac{a^c}{b^c}\]

\[\sqrt[n]{a}=a^{\frac{1}{n}}\]

Własności granic ciągów

Jeżeli ciągi \(a_n\) i \(b_n\) są zbieżne do granic właściwych (skończonych liczb), to

\(\lim\limits_{n\to \infty}(a_n+b_n)=\lim\limits_{n\to \infty} a_n+\lim\limits_{n\to \infty} b_n\)

\(\lim\limits_{n\to \infty}(a_n-b_n)=\lim\limits_{n\to \infty} a_n-\lim\limits_{n\to \infty} b_n\)

\(\lim\limits_{n\to \infty}(c\cdot a_n)=c\cdot \lim\limits_{n\to \infty} a_n\), gdy \(c\in\mathbb{R}\)

\(\lim\limits_{n\to \infty}(a_n\cdot b_n)=\left(\lim\limits_{n\to \infty} a_n\right)\cdot \left(\lim\limits_{n\to \infty}b_n\right) \)

\(\lim\limits_{n\to \infty}\left(\frac{a_n}{b_n}\right)=\frac{\lim\limits_{n\to \infty} a_n}{\lim\limits_{n\to \infty} b_n}\), gdy \(\lim\limits_{n\to \infty} b_n\neq 0\)

\(\lim\limits_{n\to \infty}(a_n)^p=\left(\lim\limits_{n\to \infty} a_n\right)^p\),
gdy p jest liczbą całkowitą różną od zera

\(\lim\limits_{n\to \infty}\sqrt[k]{a_n}=\sqrt[k]{\lim\limits_{n\to \infty} a_n}\),
gdy k jest liczbą naturalną różną od 1

UWAGA: Powyższe własności są prawdziwe tylko dla granic właściwych (czyli liczbowych), nie są one natomiast prawdziwe dla granic niewłaściwych (czyli nieskończonych \(-\infty\) oraz \(+\infty\)), np.

\[\lim\limits_{n\to \infty} (n^2-n)\neq \lim\limits_{n\to \infty}n^2-\lim\limits_{n\to \infty}n\]

ponieważ:

\[\lim\limits_{n\to \infty} (n^2-n)=\lim\limits_{n\to \infty} n\cdot (n-1)=[\infty\cdot \infty]=\infty\]

\[\lim\limits_{n\to \infty}n^2-\lim\limits_{n\to \infty} n=[\infty-\infty]\,-\,\textrm{nie istnieje!}\]

 

Komentarzy (0)


    Na tej stronie znajdziesz około tysiąca zadań z rozwiązaniami i przykładów krok po kroku głównie z zakresu matematyki wyższej, jak również z matematyki na poziomie liceum. Zadania podzielone są na działy tematyczne zazwyczaj według przedmiotów i tematów wymaganych na studiach, np. zadania z pochodnych funkcji, całek, macierzy, liczb zespolonych itd.

    W każdej kategorii znajdziesz zadania o różnym poziomie trudności, pod każdym zadaniem znajdziesz wiele wskazówek jak przebiega rozwiązanie, często rozwiązanie omówione jest krok po kroku. Warto starać się samodzielnie rozwiązać jak najwięcej zadań znajdujących się na stronie, ponieważ są tu zebrane typowe zadania z kolokwiów i egzaminów z polskich uczelni. Pamiętaj, że zawsze masz możliwość zadania pytania w komentarzu pod każdym zadaniem. Powodzenia w zrozumieniu matematyki!